Speaker Change Detection using Support Vector Machines
نویسندگان
چکیده
Speaker change detection is important for automatic segmentation of multispeaker speech data into homogeneous segments with each segment containing the data of one speaker only. Existing approaches for speaker change detection are based on the dissimilarity of the distributions of the data before and after a speaker change point. In this paper, we propose a classification based technique for speaker change detection. Patterns extracted from the data around the speaker change points are used as positive examples. Patterns extracted from the data between the speaker change points are used as negative examples. The positive and negative examples are used in training a support vector machine for speaker change detection. The trained SVM is used to scan the continuous speech signal of multispeaker data and hypothesize the points of speaker change. We consider two methods for extraction of fixed length patterns that are given as input to the support vector machine. In the first method, the spectral feature vectors of a fixed number of frames are concatenated to derive a pattern vector. In the second method, the sequence of feature vector frames is considered as a trajectory, and the outerproduct matrix of the trajectory matrix is vectorized to derive a pattern vector. The performance of the proposed approach for speaker change detection and the two methods for pattern extraction is studied on the extended data of the NIST 2003 speaker recognition evaluation database.
منابع مشابه
A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملComparison between factor analysis and GMM support vector machines for speaker verification
We present a comparison between speaker verification systems based on factor analysis modeling and support vector machines using GMM supervectors as features. All systems used the same acoustic features and they were trained and tested on the same data sets. We test two types of kernel (one linear, the other non-linear) for the GMM support vector machines. The results show that factor analysis ...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005